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ABSTRACT Accumulating evidence indicates that overconsumption of ethanol contributes in many ways to the patho-

genesis of hepatic injury. Although studies indicate that taurine decreases lipogenesis, oxidative stress, and inflammatory

cytokines, the protective effect of taurine against alcohol-induced liver injury is still unclear. To clarify the precise signaling

involved in the beneficial effect of taurine on alcohol-induced liver injury, rats were randomly divided into four treatment

groups: (1) control (Ctl), (2) alcohol (Alc), (3) Alc + taurine (Tau), and (4) Alc + silymarin (Sil). The Tau and Sil groups had

lower lymphocyte infiltration and significantly lower TLR-4/MyD88 and IjB/NFjB compared to the Alc group. The inducible

nitric oxide synthase (iNOS), C-reactive protein (CRP), tumor necrosis factors (TNF)-a, interleukin (IL)-6, and IL-1b were

also significantly lower in the Tau and Sil groups than in the Alc group. The experimental results indicated that hepato-

protection against alcohol-induced inflammation may be mediated by decreased TLR-4/MyD88 signaling.
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INTRODUCTION

Excessive alcohol consumption causes not only al-
coholic liver disease but also hepatic manifestations

such as fatty liver, alcoholic hepatitis, chronic hepatic fi-
brosis, hepatic cirrhosis, and liver cancer.1 Accumulating
evidence indicates that oxidative damage induced by ethanol
contributes to the pathogenesis of alcohol hepatoxicity.2

Ethanol-induced oxidative stress results from the combina-
tion of impaired antioxidant defenses and production of
reactive oxygen species by the mitochondrial electron
transport chain, the alcohol-inducible cytochrome P450 2E1,
and activated phagocytes.3 Interactions between alcohol
metabolic by-products and cell components also cause tissue
damage and changes in the ratio of NADH/NAD+ redox
potential in the liver.4

Indeed, both animal and clinical studies indicate that
chronic hepatitis induced by alcohol should be classified as
an alcoholic liver disease with an immunopathological eti-

ology and should be considered a step in the development of
liver cirrhosis, fibrosis, and liver cancer.5–7

Antioxidants, that is, free radical scavenging compounds,
reportedly ameliorate oxidative stress-related hepatic dam-
age.8 One well-known antioxidant is silymarin, which is the
active ingredient extracted from Silybum marianum (milk
thistle). Silymarin has chemoprotective effects against liver
injuries such as hepatoxicity induced by carbon tetrachloride
(CCl4), liver fibrosis, and ethanol-induced hepatic inflam-
mation.9–11 Recent clinical trials also indicate that long-term
administration of silymarin significantly increases the sur-
vival time of patients with alcohol-induced liver cirrhosis.12

In fact, silymarin is apparently the complementary alterna-
tive medicine most widely used for treating alcohol-induced
liver disease in the United States.13 Accordingly, silymarin is
often used as a positive control in hepatoprotective studies.

Taurine (2-amino ethanesulfonic acid) is a major free in-
tracellular amino acid in many mammalian tissues, for ex-
ample, the brain, retina, myocardium, skeletal muscle, liver,
platelets, and leukocytes.14 Taurine is not considered an es-
sential amino acid since it does not participate in peptide
bond formation.15 Although taurine can be synthesized from
methionine and cysteine, the biosynthesis rate is slow in
mammals.16 Therefore, taurine is mainly obtained by con-
suming eggs, meat, and seafood.15,17 Recent studies indicate
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that taurine is an antioxidant with crucial roles in detoxifi-
cation, membrane stabilization, osmoregulation, neuromo-
dulation, and brain and retinal development.18

For example, in a rat model of chronic alcohol con-
sumption, rats given taurine supplements at a dosage of 1 g
Tau/kg body weight showed that alcohol metabolism was
accelerated by upregulation of alcohol dehydrogenase, cat-
alase, and aldehyde dehydrogenase activities, whereas mi-
crovesicular steatosis and necrotic cells in the liver were
reduced.19 Our recent study indicated that taurine down-
regulates lipogenesis, oxidative stress, and inflammatory
cytokines in a rat model of chronic alcohol consumption.20

However, the precise signaling involved in the beneficial
effect of taurine on alcohol-induced liver injury is still ob-
scure. Therefore, this study investigated the precise signal-
ing conferred by taurine in alcohol-induced liver injury.

MATERIALS AND METHODS

Animals

This study was approved by the Institutional Animal Care
and Use Committee at Chung Shan Medical University (IA-
CUC Approval No. 1315). Animal welfare and experimental
procedures were performed according to the NIH Guide for the

Care and Use of Laboratory Animals. The experimental ani-
mals were purchased and grouped as described elsewhere.21

Thirty-two male Wistar rats (body weight: *190 g) were
purchased from BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan).
Rats were housed individually in cages in an animal room at
22�C – 2�C with a 12-h light–12-h dark cycle.

Diet

The rats were given chow containing 48.7% (w/w) car-
bohydrate, 23.9% (w/w) protein, 5.0% (w/w) fat, 5.1% (w/w)
fiber, and 7.0% ash (Laboratory Rodent Diet 5001; PMI
Nutrition International/Purina Mills LLC., Richmond, IN,
USA) with water for 1 week to allow acclimation. The rats
were then fed chow and water ad libitum. Chronic alcoholic
hepatitis in rats was induced as described elsewhere.20 Since
our previous study indicated that a dosage of 1 g taurine/kg
BW and 0.25 g silymarin/kg BW accelerated alcohol
clearance in a rat model of chronic alcohol consumption,20

the rats in the current study were randomly divided into four
treatment groups with eight rats each: (1) control group
(Ctl): 3 mL of phosphate-buffered saline (PBS) per day
(p.o.); (2) alcohol group (Alc): 3 g alcohol/kg BW in 3 mL of
distilled water per day (p.o.); (3) 1· taurine group (Tau): 3 g
alcohol/kg BW + 1 g Tau/kg BW in 3 mL of sterile distilled

FIG. 1. Detection of liver damage indices.
Lymphocyte infiltration and expression of in-
ducible nitric oxide synthase (iNOS) and
C-reactive protein (CRP). (A) Hepatic tissue
sections of rats from different groups (Ctl, Alc,
Tau, and Sil) were stained with hematoxylin and
eosin. These images of hepatic architecture were
magnified by 200 · . Amplified images were
shown in the right panel of each section. The lym-
phocyte infiltration was indicated by an arrow.
(B) Liver lysates obtained from different groups
of rats (Ctl, Alc, Tau, and Sil) were probed with
antibodies against iNOS and CRP. (C) Bars rep-
resent the relative protein quantification of iNOS
and CRP on the basis of b-actin. Similar results
were observed in three independent experiments.
* and # indicate the significant difference, P < .05,
compared to Ctl and Alc groups, respectively.
Color images available online at www.liebertpub
.com/jmf
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water per day (p.o.); and (4) 1X silymarin group (Sil): 3 g
alcohol/kg BW + 0.25 g silymarin/kg BW/day in 3 mL of
sterile distilled water per day (p.o.). The experimental pe-
riod lasted for 6 weeks and then rats were sacrificed by CO2

asphyxiation. The liver tissues were collected and stored at
-80�C until use.

Hematoxylin–eosin staining

The liver samples were excised and soaked in formalin
and covered with wax.22 Slides were prepared by depar-
affinization and dehydration. They were passed through a
series of graded alcohols (100%, 95%, and 75%), 15 min
each. The slides were then dyed with hematoxylin. After
gently rinsing with water, each slide was soaked with 85%
alcohol, 100% alcohol I and II for 15 min each, and finally
they were soaked with Xylene I and Xylene II. Photo-
micrographs were obtained using Zeiss Axiophot micro-
scopes (Carl Zeiss, Inc., Thornwood, NY, USA).

Preparation of liver homogenates

Livers were homogenized with PBS (pH 7.0, containing
0.25 M sucrose) at a 1:9 ratio (liver:PBS, weight:volume) on
ice, and the filtrate was collected for further analyses. The
protein level in the filtrate was measured according to the
procedures specified in the Bio-Rad Protein Assay Kit (Cat
No. 500-0006; Bio-Rad Laboratories, Inc., Hercules, CA,
USA) with bovine serine albumin as a standard.

Immunoblotting

Protein samples were separated in 10% or 12.5% sodium
dodecyl sulfate–polyacrylamide gel electrophoresis and
electrophoretically transferred to the nitrocellulose mem-
brane (Amersham Biosciences, Piscataway, NJ, USA) de-
scribed elsewhere.21,23 After blocking with 5% nonfat dry
milk in PBS, antibodies against tumor necrosis factors
(TNF)-a, interleukin (IL)-6, IL-1b, inducible nitric oxide
synthase (iNOS), C-reactive protein (CRP), toll-like receptor
(TLR)-4, myeloid differentiation factor (MyD)88, extracel-
lular signal-regulated kinases (ERK), phosphorylated-ERK
(p-ERK), P38, p-P38, IjB, p-IjB, p-nuclear factor (NF)-jB
p65 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), and
b-actin (Upstates, Charlottesville, VA, USA) were diluted in
PBS with 2.5% bovine serum albumin and incubated for
1.5 h with gentle agitation at room temperature. The mem-
branes were washed twice with PBS-Tween for 1 h and a
secondary antibody conjugated with horseradish peroxidase
(HRP) (Santa Cruz Biotechnology) was added. Pierce’s Su-
persignal West Dura HRP Detection Kit (Pierce Biotechnology,
Inc., Rockford, IL, USA) was used to detect antigen–antibody
complexes. Quantification of results was performed by densi-
tometry (Appraise; Beckman-Coulter, Brea, CA, USA).

Statistical analyses

All statistical analyses were performed using SPSS 10.0
software (SPSS, Inc., Chicago, IL, USA). Three indepen-
dent experiments were repeated. Statistical analyses were

performed using ANOVA plus posterior multiple compari-
son test to test the difference. P < .05 was considered sta-
tistically significant.

RESULTS

Taurine decreases hepatic lymphocyte infiltration
and the expression of hepatic iNOS and CRP proteins
in a rat model of chronic alcohol consumption

To clarify the anti-inflammatory effects of taurine in rats
with chronic alcohol consumption, this study measured he-
patic lymphocyte infiltration and expressions of iNOS and
CRP protein in the livers of rats given PBS, alcohol, taurine,
and silymarin. Notably, lymphocyte infiltration of the liver
was markedly higher in the Alc group compared with the Ctl
group (Fig. 1A). In contrast, lymphocyte infiltration in the
liver was lower in the Tau and Sil groups than in the Alc group.
The iNOS and CRP proteins and hepatic inflammation-
associated proteins were significantly higher in the Alc

FIG. 2. Expression of toll-like receptor (TLR)-4 and myeloid dif-
ferentiation factor (MyD)88. Liver lysates obtained from different
groups of rats (Ctl, Alc, Tau, and Sil) were probed with antibodies
against (A) TLR-4 and (B) MyD88. Bars represent the relative pro-
tein quantification of (C) TLR-4 and MyD88 on the basis of b-actin.
Similar results were observed in three independent experiments.
* and # indicate the significant difference, P < .05, compared to Ctl
and Alc groups, respectively.

TAURINE ATTENUATES ALCOHOL-INDUCED LIVER INFLAMMATION 1293



group than in the Ctl group (Fig. 1B). In contrast, the iNOS
and CRP protein levels in the liver were significantly lower
in the Tau and Sil groups than in the Alc group (Fig. 1B, C).

Taurine decreases the expressions of TLR-4/MyD88
and IkB/NFkB p65 signaling in rats with chronic
alcohol consumption

The signaling involved in the protective effect of taurine on
alcohol-induced hepatic injury was further investigated by
studying the signaling molecules, TLR-4 and IjB/NF-jB
p65. Expressions of TLR-4 and its consequent molecule
MyD88 in the liver were significantly higher in the Alc group
than in the Ctl group (Fig. 2). In contrast, expressions of both
TLR-4 and MyD88 in the liver were significantly lower in the
Tau and Sil groups than in the Alc group (Fig. 2).

Experiments were also performed to examine
phosphorylated-ERK1/2 (p-ERK1/2) and phosphorylated-
P38 (p-P38), the downstream molecules of TLR-4/MyD88.
Expressions of p-ERK1/2 and p-P38 in the liver were
significantly higher in the Alc group than in the Ctl group

(Figs. 3A, B). In contrast, expressions of p-ERK1/2 and p-P38
in the liver were significantly lower in the Tau and Sil groups
than in the Alc group (Fig. 3A, B). Moreover, p-IjB and p-
NF-jB p65, another downstream signaling of TLR-4/
MyD88, were examined. Notably, expressions of p-IjB and
p-NFjB p65 in the liver were significantly higher in the Alc
group than in the Ctl group (Fig. 4A, B). In contrast, signif-
icant decreases in both p- IjB and p-NFjB p65 were ob-
served in the livers of rats from Tau and Sil groups compared
to those from the Alc group (Fig. 4, B).

Taurine decreases the expressions of serum
and hepatic IL-1b, IL-6, and TNF-a in rats
with chronic alcohol consumption

The consequent inflammatory cytokines, TLR-4/MyD88,
p-IjB, and p-NF-jB p65 signaling, and IL-1b, IL-6, and
TNF-a, were studied to elucidate anti-inflammatory effects
of taurine on alcohol-induced liver inflammation. The IL-
1b, IL-6, and TNF-a in serum were significantly higher in
the Alc group than in the Ctl group (Fig. 5A). Conversely,

FIG. 4. Expression of p-IjB and p-NF-jB. Liver lysates obtained
from different groups of rats (Ctl, Alc, Tau, and Sil) were probed with
antibodies against (A) p-IjB and (B) and p-NF-jB. Bars represent the
relative protein quantification of p-IjB and p-NF-jB on the basis of
ERK1/2 and P38, respectively. Similar results were observed in three
independent experiments. * and # indicate the significant difference,
P < .05, compared to Ctl and Alc groups, respectively.

FIG. 3. Expression of p-ERK1/2 and p-P38. Liver lysates obtained
from different groups of rats (Ctl, Alc, Tau, and Sil) were probed with
antibodies against (A) p-ERK1/2 and (B) p-P38. Bars represent the
relative protein quantification of p-ERK1/2 and p-P38 on the basis of
ERK1/2 and P38, respectively. Similar results were observed in three
independent experiments. * and # indicate the significant difference,
P < .05, compared to Ctl and Alc groups, respectively.
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IL-1b, IL-6, and TNF-a in the serum were significantly
lower in the Tau and Sil groups than in the Alc group (Fig.
5). Accordingly, similar findings were observed in rat livers.
The IL-1b, IL-6, and TNF-a in the liver were significantly
higher in the Alc group than in the Ctl group (Fig. 6A). In
contrast, IL-1b, IL-6, and TNF-a in the liver were signifi-
cantly lower in Tau and Sil groups than in the Alc group
(Fig. 6A). Figures 6B–D show the quantification results for
IL-1b, IL-6, and TNF-a, respectively.

DISCUSSION

Studies indicate that natural products are the best way to
treat some physiological disorders. Taurine is known to be a
vital amino acid with multiple functions, including regula-
tion of the immune responses and protection of biological
systems against various injuries.22,24–26 Taurine is also
known to have potent antioxidant properties and to regulate
proinflammatory cytokines.27–29 Although taurine has pro-
ven effective for treating alcohol-induced hepatic injury,30

the precise signaling involved in its protective activity is still
unclear. This study further showed that by inhibiting TLR-4/
MyD88 and IjB/NFjB p65 signaling, taurine suppresses
inflammation-associated proteins and cytokines, which al-
leviates chronic alcohol-induced liver inflammation.

TLR-4 protein encoded by the TLR-4 gene is a member of
the TLR family, which plays important roles in pathogen
recognition and activation of innate immunity.31 Activation
of innate immunity by TLR-4 signaling is known to be a key
process in chronic liver disorders.32 TLR-4 transduces sig-
nals through MyD88, a common signal adaptor molecule.
This cascade leads to the activation of NF-jB and results in
the production of various proinflammatory cytokines, such
as IL-1b, TNF-a, and IL-6.33 Subsequently, this process
induces the expressions of inflammatory markers such as
CRP and iNOS.34,35 CRP, produced by hepatocytes, is an
annular pentameric protein, the level of which rises in re-
sponse to inflammation.36,37 In addition, iNOS, an isoform
of NOS enzyme family, could produce large amounts of NO
as an immune defense mechanism.35 Both CRP and iNOS
are known to be induced by various proinflammatory cyto-
kines, including IL-1b, IL-6, and TNF-a, and elevated levels
of CRP and iNOS are recognized as markers in alcohol-
induced liver injury.34,35 Consistently, similar results were
observed in rats with chronic alcohol consumption in this
study. In contrast, taurine was demonstrated to reduce the
expression of hepatic inflammatory molecules such as
iNOS, CRP, TNF-a, IL-6, and IL-1b and the activation of
TLR-4/MyD88 and NF-jB signaling in rats with chronic
alcohol consumption. Accordingly, these findings suggest a

FIG. 5. Expression of serum interleukin (IL)-
1b, IL-6, and tumor necrosis factors (TNF)-a.
Serum samples obtained from different groups of
rats (Ctl, Alc, Tau, and Sil) were probed with
antibodies against (A) IL-1b, IL-6, and TNF-a.
(B) Represents the loading control of the serum
samples. Bars represent the protein quantification
of (C) IL-1b, (D) IL-6, and (E) TNF-a on the
basis of Ctl group. Similar results were observed
in three independent experiments. * and # indi-
cate the significant difference, P < .05, compared
to Ctl and Alc groups, respectively.
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protective role of taurine on alcohol-induced liver injury by
decreasing the hepatic levels of CRP and iNOS through
TLR-4/MyD88 and NF-jB signaling along with the de-
creases in proinflammatory cytokines, including TNF-a,
IL-6, and IL-1b. Although these findings provide a possi-
ble mechanism for taurine in alleviating alcohol-induced
liver inflammation, further studies are still needed to clar-
ify whether taurine alleviates the alcohol-induced liver
inflammation by directly acting on these inflammatory
molecules.

Overconsumption of alcohol causes various morpholog-
ical and functional changes in the liver that contribute to
various hepatic pathological processes such as steatosis,
inflammation, fibrosis, cirrhosis, and carcinoma.38,39 In
terms of morphology, hepatic cirrhosis or even death can
result from macrovesicular steatosis, Mallory–Denk bodies
(MDB), megamitochondria, occlusive lesions of terminal
hepatic venules, and pericellular fibrosis.40 Studies show
that MDBs occur in the cytoplasm of hepatocytes in 65%
and 51% of patients with alcoholic hepatitis and alcoholic
cirrhosis, respectively.41 Formation of MDBs is known to
increase IL-1b and its subsequent cytokines, for example,
TNF-a. Liver biopsies from alcoholic hepatitis patients of-

ten reveal IL-1b-forming macrophages. The IL-1b activates
expressions of interferon (IFN)-c and TNF-a receptors. The
IFN-c and TNF-a induce two pathways of MDB formation:
one pathway is epigenetic changes resulting in the im-
munoproteasome-26S proteasome switch; another pathway
is the TLR-4- NF-jB-ERK-P38 phosphorylation.42 By ac-
tivating the TLR-4 signaling pathway, both factors con-
tribute to inflammation and subsequent injuries.43

Moreover, NF-jB activation is known to be an essential
factor in MDB formation. Experiments in mice have shown
that MDBs can be induced in the liver by consumption of
diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarbox-
ylate (DDC). Primary cultures of DDC-treated hepatocytes
upregulate IKK, ERK, JNK, and P38 after 3 h of culturing.42

NF-jB is upregulated by the sixth day of in vitro culture
when MDBs form spontaneously and by the 10th week of
in vivo DDC feeding. Formation of MDB can also be pre-
vented by specific inhibitors of NF-jB, JNK, or P38.42,44

Indeed, these findings might indicate a positive correlation
between formation of MDBs and activation of TLR-4/
MyD88 and NF-jB/ERK/P38 signaling. Although our ex-
perimental findings revealed inhibitory effects of taurine on
alcohol-induced liver injury by suppressing TLR-4/MyD88

FIG. 6. Expression of hepatic IL-1b, IL-6, and
TNF-a. Liver lysates obtained from different
groups of rats (Ctl, Alc, Tau, and Sil) were
probed with antibodies against (A) IL-1b, IL-6,
and TNF-a. Bars represent the relative protein
quantification of (B) IL-1b, (C) IL-6, and (D)
TNF-a on the basis of b-actin, respectively. Si-
milar results were observed in three independent
experiments. * and # indicate the significant
difference, P < .05, compared to Ctl and Alc
groups, respectively.
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and NF-jB/ERK/P38 signaling, the precise roles of taurine
on MDB formation are still unclear and need further in-
vestigations.

Although both taurine and silymarin have beneficial ef-
fects on alcohol-induced liver injury, a very recent study
reported a possible side effect of silymarin, that is, in pa-
tients with both type-2 diabetes and liver injury, silymarin
induces insulin resistance.45 This side effect is attributable
to the ability of silymarin to disrupt insulin signaling by
increasing phosphatase and tensin homolog expression. This
study is the first to demonstrate that, when integrated with
the protective mechanism of silymarin, taurine alleviates
alcohol-induced liver injury by reducing IjB/NF-jB and
TLR-4/MyD88 signaling. These experimental results may
help researchers develop an alternative remedy for alcohol-
induced liver injury and suggest that taurine is a potential
ingredient for hepatoprotective health foods.
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